Nociones de termodinámica

La termodinámica (del griego termo , que significa " calor " y dinámico , que significa "fuerza") es una rama de la física que estudia los fenómenos relacionados con el calor.

termodinamica001
Motor de combustión interna: transferencia de energía.

Específicamente, la termodinámica se ocupa de las propiedades macroscópicas (grandes, en oposición a lo microscópico o pequeño) de la materia, especialmente las que son afectadas por el calor y la temperatura, así como de la transformación de unas formas de energía en otras.

Estudia los intercambios de energía térmica entre sistemas y los fenómenos mecánicos y químicos que implican tales intercambios. En particular, estudia los fenómenos en los que existe transformación de energía mecánica en térmica o viceversa.

Cuando la energía (mecánica, térmica, eléctrica, química…) se transforma de una forma a otra, siempre hay una cantidad que se convierte en calor.

Aproximadamente, calor significa "energía en tránsito" y dinámica se refiere al "movimiento", por lo que, en esencia, la termodinámica estudia la circulación de la energía y cómo la energía infunde movimiento.

Históricamente, la termodinámica se desarrolló a partir de la necesidad de aumentar la eficiencia de las primeras máquinas de vapor.

Es importante saber que la termodinámica estudia los sistemas que se encuentran en equilibrio. Esto significa que las propiedades del sistema —típicamente la presión, la temperatura, el volumen y la masa, que se conocen como variables termodinámicas— son constantes.

Además, la termodinámica nos ayuda a comprender por qué los motores no pueden ser nunca totalmente eficientes y por qué es imposible enfriar nada hasta el cero absoluto, una temperatura a la que las sustancias no tienen energía calórica.

Los principios de la termodinámica se pueden aplicar al diseño de motores, al cálculo de la energía liberada en reacciones o a estimar la edad del Universo.

termodinamica002
Intercambio de energía.

El punto de partida para la mayor parte de las consideraciones termodinámicas son las leyes de la termodinámica, que postulan que la energía puede ser intercambiada entre sistemas físicos en forma de calor o trabajo. También se postula la existencia de una magnitud llamada entropía , que puede ser definida para cualquier sistema.

Las Leyes Termodinámicas pueden expresarse de la siguiente manera:

Ley Cero de la Termodinámica

A esta ley se le llama de "equilibrio térmico". El equilibrio térmico debe entenderse como el estado en el cual los sistemas equilibrados tienen la misma temperatura.

Esta ley dice "Si dos sistemas A y B están a la misma temperatura, y B está a la misma temperatura que un tercer sistema C, entonces A y C están a la misma temperatura". Este concepto fundamental, aun siendo ampliamente aceptado, no fue formulado hasta después de haberse enunciado las otras tres leyes. De ahí que recibe la posición cero.

Un ejemplo de la aplicación de esta ley lo tenemos en los conocidos termómetros.

Primera Ley de la Termodinámica

Esta primera ley, y la más importante de todas, también conocida como principio de conservación de la energía , dice: "La energía no puede ser creada ni destruida, sólo puede transformarse de un tipo de energía en otro".

termodinamica003
Trabajo y energía.

La primera ley de la termodinámica da una definición precisa del calor, y lo identifica como una forma de energía. Puede convertirse en trabajo mecánico y almacenarse, pero no es una sustancia material.

Experimentalmente se demostró que el calor, que originalmente se medía en unidades llamadas calorías , y el trabajo o energía, medidos en julios , eran completamente equivalentes. Una caloría equivale a 4,186 julios.

Ver: PSU: Física; Pregunta 14_2005(1)

Segunda Ley de la Termodinámica

La segunda ley dice que "solamente se puede realizar un trabajo mediante el paso del calor de un cuerpo con mayor temperatura a uno que tiene menor temperatura". Al respecto, siempre se observa que el calor pasa espontáneamente de los cuerpos calientes a los fríos hasta quedar a la misma temperatura.

La segunda ley de la termodinámica da, además, una definición precisa de una propiedad llamada entropía (fracción de energía de un sistema que no es posible convertir en trabajo).

Para entenderla, la entropía puede considerarse como una medida de lo próximo o no que se halla un sistema al equilibrio; también puede considerarse como una medida del desorden (espacial y térmico) del sistema.

Pues bien, esta segunda ley afirma que "la entropía, o sea, el desorden, de un sistema aislado nunca puede decrecer. Por tanto, cuando un sistema aislado alcanza una configuración de máxima entropía, ya no puede experimentar cambios: ha alcanzado el equilibrio" (Ver: Procesos reversibles e irreversibles en la Naturaleza ).

termodinamica004
El cero absoluto implicaría falta total de movimiento atómico.

Como la entropía nunca puede disminuir, la naturaleza parece pues "preferir"’ el desorden y el caos. Puede demostrarse que el segundo principio implica que, si no se realiza trabajo, es imposible transferir calor desde una región de temperatura más baja a una región de temperatura más alta.

Tercera Ley de la Termodinámica

El tercer principio de la termodinámica afirma que "el cero absoluto no puede alcanzarse por ningún procedimiento que conste de un número finito de pasos. Es posible acercarse indefinidamente al cero absoluto, pero nunca se puede llegar a él".

Es importante recordar que los principios o leyes de la Termodinámica son sólo generalizaciones estadísticas, válidas siempre para los sistemas macroscópicos, pero inaplicables a nivel cuántico.

Asimismo, cabe destacar que el primer principio, el de conservación de la energía, es una de las más sólidas y universales de las leyes de la naturaleza descubiertas hasta ahora por la ciencia.

Fuentes Internet:

http://usuarios.lycos.es/yxtzbldz85/

Ver, en Internet:

http://www.youtube.com/watch?v=veFLTN13PGo